Operations Optimization
Development of tools for process automation, and heuristics design to solve complex problems in limited timeframes.
Supply chain applications
Production programming
Storage logics and warehouse management
Logistic network design
Vehicle routing
Decision making automation
Team task assignment
Project planning
Transport cargo assignment
Maintenance planning
Concepts
From model generation, solutions are searched by the use and development of algorithms or heuristics, that constitute logical procedures, deterministic or stochastic, that result in proposals for answers of the posed situation.
Instead of trying different scenarios with a simulation, optimization allows, iterative and autonomously, to find the right combination of variables that comply with the established restrictions, maximizing or minimizing the objective function.
It constitutes a key factor in the automatization of the decision making process.
Optimization algorithms are divided in two large categories given the nature of the problem to solve.
Optimización Continua
Los modelos de Optimización Continua son aquellos en los cuales los valores de las variables puede tomar cualquier valor real. Para estos casos se suele aplicar el algoritmo Simplex, diseñado justamente para problemas de programación lineal.
Optimización Discreta
En contraste, la Optimización Discreta abarca aquellos modelos donde se presenta al menos una variable de control que puede tomar unicamente valores discretos (generalmente enteros). La mayoría de los problemas a resolver en Supply Chain caen dentro de esta categoría. Usualmente, la cantidad de combinaciones de valores es tan elevada que probar todas las opciones no es viable en tiempos razonables. En estos procesos de resolución, se busca balancear la probabilidad de encontrar un óptimo global con el tiempo necesario para su ejecución.
Continuous Optimization
Discrete Optimization
In turn, there are also other ways to categorize problems in order to determine the right algorithm to apply.
Optimization with or without restrictions
Although the global optimum of the system is always sought, there may be restrictions on the values that the variables can take.
Deterministic Optimization
In Deterministic Optimization, it is assumed that all the data for a problem are known and accurate. However, such data is not always available, or simply the nature of the modeled processes present stochastic behaviors, and therefore, said variability must be considered in the model.